
7 AD-AbS 02S MARYLANDU WI COLLEGE PARK COMPUTER VISION LAB F/6 9/2
PARALLEL STRING PARSING USING LATTICE GRAPHS(U)
M4AT 81 A ROSENFELD AFOSR-77-3271

UNCLASSIFIED TR-1O3b AFOSR-TR-81-0623 NL

AIO5R TRm 81 -0623

COMPUTER SCIENCE
TECHNICAL REPORT SERIES

DTIC
-,_. -"LECTE

". OCT 6 1981

A7 UNIVERSITY OF MARYLAND
COLLEGE PARK, MARYLAND

20742

_. distr lut ion-unjut9Ctl

TR 10 36 May 1981
AFOSR-77-3271

PARALLEL STRING PARSING
USING LATTICE GRAPHS I "

Azriel Rosenfeld

(Computer Vision Laboratory)
Computer Science Center
University of Maryland
College Park, MD 20742

ABSTRACT

Given a grammar G and a string a, all possible parses
of a can be constructed by repeatedly applying the rules of
G in parallel. This process creates a "lattice graph" in
which any directed path from the least element to the great-
est element is a sentential form that occurs in a (partial)
parse of a. Examples are given illustrating how, at least
for some grammars, this process does not lead to a combina-
torial explosion, and could thus be used to parse strings
very rapidly if suitable parallel hardware were available.

The support of the U.S. Air Force Office of Scientific
Research under Grant AFOSR-77-3271 is gratefully acknowledged,
as is the help of Sherry Palmer in preparing this report.

1. Introduction

Let G be a grammar, which we shall first assume for

simplicity to be context-free, with rules of the form A-a

(a non-null). Conventionally, to parse a string a with

respect to G, we find a match in a to the right-hand side

(RHS) of some rule A-a; replace this instance of a by A;

and repeat the process, until u is reduced to a single S

(the "start symbol" of G).

Time bounds on context-free parsing have been extensively

studied (e.g., [11). For general context-free grammars,

the time required to parse a string of length n is on the
3

order of n ; and for non-context-free grammars the situa-

tion is presumably worse.

One could image parsing "in parallel" by replacing

many c 1's by A.'s simultaneously, but this leads to diffi-

culties if the RHSs overlap; for example, if A-a and B-ki

are rules, where 3 is a substring of a, where do we put the

B relative to the A when we apply both rules? In [2] it is

suggested that parallel parsing can be done by a two-step

process, first choosing nondeterministically which RHSs

should be rewritten, and then actually rewriting them iff

no overlapping RHS was chosen for rewriting. It is shown

in [2] that the language parsed in this way is the same a--

the language of G as ordinarily defined.

U -

This note describes an alternative approach in which

we actually rewrite all RHSs in parallel, and represent

the result not by a string but by a "lattice graph" in

which paths between the terminal points correspond to

sentential forms. It is easily seen that this process

yields all possible parses of the given string. Examples

are given illustrating how, at least for some grammars,

this process does not lead to a combinatorial explosion.

Implementation of this approach using a reconfigurable

network of processors is also briefly discussed. Such an

implementation would permit parsing to be carried out

rapidly, with the time required depending primarily on

the height of the parse tree.

2. P iral]el parsinq

Let G be an acyclic directed graph with set of nodes

N. If there is a (directed) path from p to q, where p,q

are in N, we say that p<q. Evidently, :3 is a partial order

relation: reflexive (p<p for all p), antisymmetric (p-q and

q-p imply p=q), and transitive (p-q and q-r imple p<r). We

say that g is the greatest lower bound (glb) of a set of nodes

N'N if g<p for all PEN, and g'£p for all pEN' implies

g' g. Similarly, we say that £ is the least upper bound

(lub) of N' if p7Z for all pEN', and p!£' for all pEN'

implies k<£'. We call G a lattice graph if every nonempty

N'cN has a glb and an lub. In particular, the glb and lub

of N itself exist; we denote them by 0 and 1, respectively.

Note that there is a path from 0 to any pEN, and from any

pEN to 1, so that G is connected. If (p,q) is an arc of

G (so that p<q), we call p a predecessor of q and q a suc-

cessor of p.

Any string x0 . .xn may be regarded as an acyclic

directed graph, with arcs between successive symbols (x. 1 ,x.),

lVi-n. Evidently a string is a lattice graph. We shall

assume that the given string a which is to be parsed begins

and ends with endmarkers, say $a¢; thus $=0 and €=l when

we regard the string as a lattice graph.

Let a be a substring of a, and let A-a be a rule of

the grammar G, where a = xi...x j (say). When we apply this

rule to o, we create a "short cut" through A from the

predecessor xi 1 of a to its successor xj+l:

A.--xiix-.xjxj--
Xi-i il j i j+l.

(Here the bar extends from just after the precedecessor of

A to just before its successor.) Evidently the result is

still a lattice graph, though it is no longer a string.

The situation is analogous if we apply many rules to G

simultaneously, even if their RHSs overlap; we still obtain

a lattice graph, e.g.

A
.w...X

B

Note that any directed path from $ to € through this graph

represents a possible sentential form derivable from a using

the grammar G.

After the first round of (parallel) rule application, we

no longer have a lattice graph that is a string, but any

directed path from $ to ¢ is a string, and we can still apply

rules to the lattice graph, by matching their RHSs against

all possible substrings of these strings. Such applications

create further "short cuts" in the graph, but it remains a

lattice graph. If we ever create a short cut in which we

can go directly from $ to ¢ via a single S (the start symbol

of G), we have successfully parsed a.

To clarify these ideas, we give a simple example. Let

G be the parenthesis string grammar whose rules are

s-ss s (s) S 0

and let G be the string $(()))

,rn=J

In the first round of parallel parsing, the rule S-*() applies

in four places, yielding the graph

$((())
SISIS 1 S1
11 1

where the subscript indicates the round number. Note that

none of these rules have overlapping RHSs. In the second

round, there are many possible paths from $ to , e.g.

$(SOS)(), but the only ones that allow new rule appli-

cations are those that contain two or more consecutive Ss.

Thus the second round yields

S2

SI1S IS1 S1

S2

where the two rules now do have overlapping RHSs. At the

third round, we still have new rule applications for the

paths that contain two consecutive Ss - i.e., the paths

for which the first two or the last two Ss were rewritten,

but not all three; but both of those paths yield the same

new path: S 2
$ (() u ()) ()¢4

S I SI1 S 1S

S2
s 3

The fourth round thus allows us to rewrite (S3) as S4 ,

and the fifth round to rewrite S4S 1 as S5 , completing

the parse of a:

S
S 2

S3
s4

S 5

In this example there is an ambiguity (the two S2 #s)

in which both alternatives lead to the same result, but there

are no "dead ends" (rule application sequences which do not

lead to a parse). As another example, consider the grammar

for palindromes of even length whose rules are

S-aa S-bb S+aSa S-*bSb

and let a be the string

$aaabbaaa¢

Here at the first round we have
S1 S1

$aaabbaaa¢
S 1 S 1 S 1

where only the center S is part of a correct parse. In fact,

aft .ho n~ext rotnr)(j the other four Ss do not contribute to rule

applictions; only the center one gives us

S 1 S]

$aaabbaaa¢
S 1 S 1 S1

S 2

and similarly at successive rounds we rewrite dS2a as S3 and

aS3a as S4, completing the parse of a.

__;u - Z:-

A third example uses the following grammar for the

set of strinqs that contain equal numbers of a's and b's:

S- aBS or bAS or aB or bA

A- bAA or a ; B aBB or b

For the string aabaabbb we have the following parallel

parse:

S3

S2 S

S 2 B2

$ a baa b b b
A1 A1 B1 A1 A B1 B1 B1

A2

B3

s3

S4

B4

S 5

The reduction, rather than increase, in the symbols created

at each step is apparent: 8 at stage 1, 5 at stage 2, 3 at

stage 3, 2 at stage 4, and 1 (the parse completion) at

stage 5.

3. Complexity

The parallel parsing process described in Section 2

constructs all possible (partial) parses of a, even mutually

inconsistent ones; indeed, after n rounds of parallel rule

applications, every possible sequence of fn rule applica-

tions is represented by a path from $ to ¢ in the lattice

graph. Thus if a has a parse of length n, the path $S¢ will

occur in the graph, and indeed every sentential form in the

parse will also occur as a path.

Of course, parallel parsing can potentially lead to

a combinatorial explosion. Even if the graph itself does

not become very large, the number of paths from $ to ¢ in

the graph will grow, and these paths must (in principle)

all be checked at each round for possible new rule applica-

tions. However, if the number and length of the rulesare not

too large, the amount of checking required cannot be very

large. If the average (out) degree of a node of the lattice

graph is d, the average number of strings of length k that

kstart at a given node is d ; thus if all rule RHSs have

length 'k, we need only check dk possibilities for each

node, on the average. Moreover, it should be possible to

use fast string matching techniques to reduce the amount

of checking that is needed. The examples given in Section

2 suggest that at least for some grammars, the graph does

not grow rapidly, and multiple paths resulting from

alternative choices at a given stage may recombine

(i.e., lead to the same derived path) at a later stage.

A possible approach to reducing the combinatorial

growth might be to apply only a subset of the rules that

are applicable at a given stage, where the subset is

chosen on heuristic grounds as being somehow "most likely"

to lead to a parse - e.g., apply the rules whose RHSs are

longest (so that they yield the shortest sentential forms),

or the rules that lead to nonterminal symbols that are

derivable from the start symbol in the fewest possible

steps. However, it is easy to contrive grammars in which

such heuristics would not lead to a successful parse.

Another possibility might be to apply all possible rules

at a given stage, but then allow the results to participate

in a cooperation/competition process (e.g., rules that give

rise to overlapping parts of a compete, since they are

mutually inconsistent; if a rule creates a symbol used by

a later rule, the latter reinforces the former), and

eliminate rule applications that have too much competition

and not enough support. Here again, however, it is not

hard to contrive examples in which this would eliminate

rules that are necessary for a parse. The use of heuristics

for rule selection, and cooperation/competition ("relaxation")

for rule elimination, will therefore not be investigated here.

4. Implementation

Tne implementation of the parallel parsing process is

straighitforward, and does not require explicit construc-

tion or the lattice graph. Our method of implementation is

based on the fact that for context-free grammars, any sym-

bol appearing in a parse has a well-defined "scope" with

respect to the original string a, i.e., it arises from a

specific substring of a. Moreover, two symbols occur con-

secutively on a path in the lattice graph iff their scopes

are consecutive substrings of u. Based on these observations,

given the string $o€ $x0 .. .x, we create for 0:i-n a list

of the symbols whose scopes begin in the ith position, and

for each of these symbols we give the position at which its

scope ends. Initially, Li consists of xi alone, with ending

position i. To find the paths through the graph that begin

with a particular syrbol A (say on list L i . with ending posi-

tion j), we use the fact that the successors of A on all such

paths are just the symbols on list Lj+ I , and we repeat this

process to find the subsequent symbols.

To apply a new rule, say A-BIB2 . . .B., we proceed as follows:

Scan the lists for all occurrences of BI . For each occurrence,

go to its successor list and check for the presence of B2 ; for

each of these, go to its successor list and check for B3; and

so on. If the rule has a short RHS, the number of possibili-

ties to be checked should not be very large. If we find a

match to the entire RHS, say with B1 on list L. and with BK
1K

having ending position j, we add an A to list Li with ending

position j. Note that two rule applications may lead to

the same result, if there are two sequences BI,... ,BK in which

the B1 's are on the same list Li and the BK's have the same

ending position j; in fact, two rules A+BI...,BK and A-CI... CH

may also lead to the same result if BI, C1 are both on L1

and BK' CH both end at j. After each round of rule applications,

we should check each list Li for duplicates (same symbol

with same ending position) and eliminate them. If we want

to maintain strict parallelism in applying the rules, the A's

that we find should be put on a separate set of lists L',1

rather than on the current lists Li; when we have completed

a round ot rule applications, we append each L! to the corre-1

sponding Li and check for duplicates.

Parallel rule application could be implemented by a multi-

processor system as follows: Each processor maintains one

of the lists Li (or several, if there are more symbols in the

initial string than there are processors). To apply the rule
A BI B,,,, we broadcast it to all the processors. Any pro-

cessor having B1's on its list sends messages to the processors

responsible for the successor lists to check for B2 's; and so

on. If a sequence goes to completion, the processor that had

the corresponding B1 on its list L. adds an A to L!. Note

that the amount of time required for parallel application of

A-BI*-.B K is not simply proportional to K, since many messages

may arrive at the same processor simultaneously and must then

wait to be processed.

5. Generalization to arbitrary grammars

Our parallel rewriting process extends in principle to

grammars that are not context-free, but there are some com-

plications. Given a rule a-a, we can apply it by construct-

ing a "bypass" (not necessarily a short-cut, since a may be

longer than a) in which a follows the predecessor(s) of a

and is followed by the successor(s) of a. If some of the

symbols in a and a are the same, e.g., in the context-sensitive

rule An-Can, it would be more economical to construct

bypasses only for the new symbols, i.e., A follows the pre-

decessors of a and is followed by its successors. Note,

however, that this could give rise to paths from $ to ¢ that

could never occur as sentential forms.

To illustrate how the process might work in a non-context-

free case, we give a context-sensitive example. The language

fa nb nc nln) has the grammar

S-abc S-aTBc

T-aTBC T-abC

CB BC bB-bb Cc-cc

For the string aaabbbccc we have the following parallel parse:

bB1 C1c

$ a a a b b b c c c

bB1 C1 c

bB2 C2 B2 C2 c

C3 B3 C3 B3
T 4 C4 B4

T
5S 6

.. .. ----..----- - - -- -
..

Note that bB2 and C2 c have the same positions as bB1 and CIC,

but are not duplicates; B2 has the other B1 as a successor,

and C2 has the other C1 as a predecessor. Similarly, C4B4

has the same position as C2B2 , but is not a duplicate (in fact

it arose from B3 and C2 , which were produced only by rewriting

C2 and B2); e.g., C2has b and B 1 as predecessors, but C4 does

not (fact, its sole predecessor is C3, which arose from re-

writing 3I).

We see from these remarks that the simple implementation

given in Section 4 for the context-free case does not general-

ize to the context-sensitive case. Rather, it becomes neces-

sary to construct the lattice graph explicitly, with pointers

from each symbol to its successors. The graph is likely to be

bigger, and it becomes much more difficult to detect duplicate

paths in the graph.

G. Concludinq remarks

With the increasing availability of highly parallel

hardware, a parallel approach to parsing may deserve

serious consideration The effectiveness of this approach

depends on limiting the combinatorial growth of the parse

graph, but in some cases this growth may not be excessively

explosive.* If the strings to be parsed are not too long,

parallel hardware is available, and processing time is a

significant consideration, parallel parsing becomes an

attractive alternative to conventional sequential methods.

*Experimental studies of the growth rate of the graph for
various types of grammars are planned.

Re ferences

1. J. E. floperoft and J. D. Ullman, Formal Language s and
their Relation to Automata, Addison-Wesley, Reading, MA,
1969, Ch. 11.

2. A. Rosenfeld, A. Y. Wu, and T. Dubitzki, Fast language
acceptance by shrinking cellular automata, TR-898, Computer
Vision Laboratory, Computer Science Center, University of
Maryland, College Park, MD, April 1980.

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE (When Dee Enter-d)

REPORT DOCUMENTATION PAGE REAL INSTRUCTIONS
BEFORE COMPLETING FORM

I. R.RT NUMBER 12. GOVT ACCESSION NO. 3. RECIPIENTS CATALOG NU.ER

A~SR-TR. 8 1 -'06 23 vI -- 4c
4. TITLE (end SubtItle) 5. TYPE OF REPORT & PERIOD COVERED

PARALLEL STRING PARSING USING Technical e port
LATTICE GRAPHS 6. PERFORMING ORG. REPORT NUMBER

TR-1036
7. AUTHOR(*) S. CONTRACT OR GRANT NUMBER(@)

Azriel Rosenfeld AFOSR-77-3271

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
Computer Science Center AE OKUI UBR

University of Maryland 31102F, 2304/A2

College Park, MD 20742
II. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Air Force Office of Scientific Research/NM Ma' 1981
Bolling AFB DC 20332 13. NUMBER OF PAGES

16
14. MONIO ORING AGENCY NAME 6 ADDRESS(II different from Controlling Office) IS. SECURITY CLASS. (of thia report)

Unclassi fied
I5a. DECL ASSIFICATION/DOWNGRAOINO

SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract entered In Block 20. It different from Report)

1. SUPPLEMENTARY NOTES

1*11. KEY WORDS (Continue on reverse side if necessary end Identify by block number)

Formal languages
Grammars
Parsing
Parallel processing

20. ABSTRACT (Continue oan reverse side If neceessry and Identify by block number)

Given a grammar G and a string (, all possible parses of c can be
constructed by repeatedly applying the rules of G in parallel.
This process creates a 'lattice graph" in which any directed path
from the least element to the greatest element is a sentential form
that occurs in a (partial) parse of 0. Examples are given illus-
trating how, at least for some grammars, this process does not lead
to a combinatorial explosion, and could thus be used to parse strings
very rapidly if suitable parallel hardware were available.

DD IO7 1473 EDITION OF I NOVS IS OBSOLETE Unclassified

